Incorporation of the electrode-electrolyte interface into finite-element models of metal microelectrodes.
نویسندگان
چکیده
An accurate description of the electrode-electrolyte interfacial impedance is critical to the development of computational models of neural recording and stimulation that aim to improve understanding of neuro-electric interfaces and to expedite electrode design. This work examines the effect that the electrode-electrolyte interfacial impedance has upon the solutions generated from time-harmonic finite-element models of cone- and disk-shaped platinum microelectrodes submerged in physiological saline. A thin-layer approximation is utilized to incorporate a platinum-saline interfacial impedance into the finite-element models. This approximation is easy to implement and is not computationally costly. Using an iterative nonlinear solver, solutions were obtained for systems in which the electrode was driven at ac potentials with amplitudes from 10 mV to 500 mV and frequencies from 100 Hz to 100 kHz. The results of these simulations indicate that, under certain conditions, incorporation of the interface may strongly affect the solutions obtained. This effect, however, is dependent upon the amplitude of the driving potential and, to a lesser extent, its frequency. The solutions are most strongly affected at low amplitudes where the impedance of the interface is large. Here, the current density distribution that is calculated from models incorporating the interface is much more uniform than the current density distribution generated by models that neglect the interface. At higher potential amplitudes, however, the impedance of the interface decreases, and its effect on the solutions obtained is attenuated.
منابع مشابه
کاربرد روش Finite element در بررسی اثر نیروهای تنشی (Shear stress) وارد بر سمان روکش دندان سانترال بالا
Since three decade ago, the application of the concept of finite element analysis (EEA) have received a keen interest among dental investigators. In practice the FEA provides detailed stress information regarding to a non-homogenious body such as craniofocal skeletal growth, tooth post ceramo-metal crowns and etc. The aim of this study was the determination of the influence of stress distribut...
متن کاملb313761a doc..b313761a chapter .. Page241
We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to describe a biological cell. The measurement takes place between a pair of facing microelectrodes in ...
متن کاملThe Relationship between Constant Friction Factor and Coefficient of Friction in Metal Forming using Finite Element Analysis
Frictional shear stress is usually determined by utilizing the coefficient of friction or the constant friction factor models. The present study deals with finite element analysis of double cup extrusion process to determine the relationship between constant friction factor (m) and coefficient of friction (µ), since the metal flow in this process is very sensitive to frictional conditions. Ther...
متن کاملFinite Element Modeling of the Neuron-electrode Interface: Stimulus Transfer and Geometry
The relation between stimulus transfer and the geometry of the neuron-electrode interface can not be determined properly using electrical equivalent circuits, since current that flows from the sealing gap through the neuronal membrane is difficult to model in these circuits. Therefore, finite element modeling is proposed as a tool for linking the electrical properties of the neuronelectrode int...
متن کاملEffects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties
In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neural engineering
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2008